

Earned Schedule Training

Instructors

Walt Lipke waltlipke@cox.net (405) 364-1594 Kym Henderson Education Director PMI Sydney, Australia Chapter kym.henderson@froggy.com.au 61 414 428 537

EVA-11 Jun 12-17, 2006

EVM Schedule Indicators
Introduction to Earned Schedule

Concept & Metrics
Indicators
Predictors
Terminology

EVA-11 Jun 12-17, 2006

Application of Concept

 Analysis & Verification
 Prediction Comparisons

 Demonstration of ES Calculator

 V1 & V2 Calculators

 Interpolation Error

Exercise – Calculate ES, SV(t), SPI(t)
 Status Update

 Applications
 PMI-CPM Earned Value Practice Standard
 ES Website

 Summary - Basic

Earned Schedule Training Advanced

Analysis Tool Demonstration
Re-Baseline Effects
Critical Path Study
Network Schedule Analysis

Impediments / Constraints
Rework

Earned Schedule Training Advanced

EV Research
Schedule Adherence
Effective Earned Value
Derivation
Indicators
Prediction

EVA-11 Jun 12-17, 2006

Earned Schedule Training Advanced

Statistical Prediction Statistical Process Control Planning for Risk Performance Indication & Analysis Outcome Prediction Summary - Advanced Quiz & Discussion Wrap Up

EVA-11 Jun 12-17, 2006

EVA-11 Jun 12-17, 2006

Earned Value Management Schedule Indicators

\$

EVM Schedule Indicators

EVA-11 Jun 12-17, 2006

EVM Schedule Indicators

SV & SPI behave erratically for projects behind schedule

- SPI improves and concludes at 1.00 at end of project
- SV improves and concludes at \$0 variance at end of project

Schedule indicators lose predictive ability over the last third of the project

EVA-11 Jun 12-17, 2006

EVM Schedule Indicators

Why does this happen? \blacksquare SV = BCWP – BCWS ■ SPI = BCWP / BCWS At planned completion BCWS = BACAt actual completion BCWP = BACWhen actual > planned completion $\blacksquare SV = BAC - BAC = 000 ■ SPI = BAC / BAC = 1.00 **Regardless of lateness !!**

EVA-11 Jun 12-17, 2006

Introduction to Earned Schedule

EVA-11 Jun 12-17, 2006

Earned Schedule Concept

14

Earned Schedule Metrics Required measures

- Performance Management Baseline (PMB) the time phased planned values (BCWS) from project start to completion
- Earned Value (BCWP) the planned value which has been "earned"
- Actual Time (AT) the actual time duration from the project beginning to the time at which project status is assessed
- All measures available from EVM

EVA-11 Jun 12-17, 2006

Earned Schedule Metrics

ES_{cum} is the:

Number of completed BCWS time increments BCWP exceeds + the fraction of the incomplete BCWS increment

■ ES_{cum} = C + I where:

C = number of time increments for BCWP \ge BCWS I = (BCWP - BCWS_C) / (BCWS_{C+1} - BCWS_C)

- ESperiod(n) = EScum(n) EScum(n-1) = $\triangle ES_{cum}$
- ATcum
- ATperiod(n) = ATcum(n) ATcum(n-1) = $\triangle AT_{cum}$ $\triangle AT_{cum}$ is normally equal to 1

Earned Schedule Indicators

Schedule Variance: SV(t)

 Cumulative: SV(t) = ES_{cum} - AT_{cum}
 Period: ΔSV(t) = Δ ES_{cum} - Δ AT_{cum}

 Schedule Performance Index: SPI(t)

 Cumulative: SPI(t) = ES_{cum} / AT_{cum}
 Period: ΔSPI(t) = ΔES_{cum} / ΔAT_{cum}

EVA-11 Jun 12-17, 2006

Earned Schedule Indicators

What happens to the ES indicators, SV(t) & SPI(t), when the planned project duration (PD) is exceeded (BCWS = BAC)? They Still Work ... Correctly!! **ES** will be \leq PD, while AT > PD SV(t) will be negative (time behind schedule) SPI(t) will be < 1.00</p> Reliable Values from Start to Finish !!

EVA-11 Jun 12-17, 2006

SV Comparison

SPI Comparison

Earned Schedule Predictors Can the project be completed as planned? TSPI = Plan Remaining / Time Remaining (PD – ES) / (PD – AT) where (PD – ES) = PDWR PDWR = Planned Duration for Work Remaining TSPI = (PD – ES) / (ED – AT) where ED = Estimated Duration

TSPI Value	Predicted Outcome
\leq 1.00	Achievable
> 1.10	Not Achievable

EVA-11 Jun 12-17, 2006

Earned Schedule Predictors

Long time goal of EVM ... Prediction of total project duration from present schedule status Independent Estimate at Completion (time) \blacksquare IEAC(t) = PD / SPI(t) $\blacksquare IEAC(t) = AT + (PD - ES) / PF(t)$ where PF(t) is the Performance Factor (time) Analogous to IEAC used to predict final cost Independent Estimated Completion Date (IECD) IECD = Start Date + IEAC(t)

EVA-11 Jun 12-17, 2006

Earned Schedule Terminology

	EVM	Earned Schedule
	Earned Value (EV)	Earned Schedule (ES)
Status	Actual Costs (AC)	Actual Time (AT)
	SV	SV(t)
	SPI	SPI(t)
Future	Budgeted Cost for Work Remaining (BCWR)	Planned Duration for Work Remaining (PDWR)
Work	Estimate to Complete (ETC)	Estimate to Complete (time) ETC(t)
Prediction	Variance at Completion (VAC)	Variance at Completion (time) VAC(t)
	Estimate at Completion (EAC) (supplier)	Estimate at Completion (time) EAC(t) (supplier)
	Independent EAC (IEAC) (customer)	Independent EAC (time) IEAC(t) (customer)
	To Complete Performance Index (TCPI)	To Complete Schedule Performance Index (TSPI)

EVA-11 Jun 12-17, 2006

Earned Schedule Terminology

Metrics	Earned Schedule	ES _{cum}	ES = C + I number of complete periods (C) plus an incomplete portion (I)
	Actual Time	AT _{cum}	AT = number of periods executed
IndicatorsSchedule Variand Schedule Performa IndexTo Complete Sched Performance Index	Schedule Variance	SV(t)	SV(t) = ES - AT
	Schedule Performance Index	SPI(t)	SPI(t) = ES / AT
	To Complete Schedule	hedule TSPI(t) ndex	TSPI(t) = (PD-ES) / (PD-AT)
	Performance Index		TSPI(t) = (PD-ES) / (ED-AT)
Predictors	edictors Independent Estimate	IEAC(t)	IEAC(t) = PD / SPI(t)
at Completion (time)		IEAC(t) = AT + (PD - ES) / PF(t)	

EVA-11 Jun 12-17, 2006

Earned Schedule Key Points

 ES Indicators constructed to behave in an analogous manner to the EVM Cost Indicators, CV and CPI

SV(t) and SPI(t)

- Not constrained by BCWS calculation reference
- Provide <u>duration</u> based measures of schedule performance

Valid for entire project, including early and late finish

 Facilitates integrated Cost/Schedule Management (using EVM with ES)

EVA-11 Jun 12-17, 2006

Application of Concept (Using Real Project Data)

EVA-11 Jun 12-17, 2006

ES Applied to Real Project Data: Late Finish Project Analysis

No EVM data prior to week 11

- SV(\$) and SV(t) show strong correlation until week 19
 Week 20 (The week of the project's scheduled completion) Client delay halted project progress until resolution in Week 26
- SV(\$) static at -\$17,500 in spite of schedule delay
 - Before trending to \$0 at project completion
- SV(t) correctly calculates and displays
 - Week on week schedule delay
 - Project -14 week schedule delay at completion
- **Conclusion**
 - SV(t) provides greater management utility than SV(\$) for portraying and analyzing schedule performance

EVA-11 Jun 12-17, 2006

Early Finish Project: SV(\$) and SV(t)

Commerical IT Infrastructure Expansion Project: Phases 2 & 3 Combined **Cost and Schedule Variances** as at Project Completion: Week Starting 9th October xx

🗕 Target SV & CV 🔶 CV cum 💶 SV (\$) cum 🔆 SV (t) cum

EVA-11 Jun 12-17, 2006

29

Early Finish Project Analysis

This project completed 3 weeks ahead of schedule

- In spite of externally imposed delay between weeks 16 and 19
- **SV(\$) and SV(t) show strong correlation over life of project**
 - Including the delay period
 - SV(t)'s advantage is calculating delay as a measure of <u>duration</u>
- With Early Finish projects
 - ES metrics SV(t) and SPI(t) have behaved consistently with their historic EVM counterparts

Conclusion

SV(t) provides greater management utility than SV(\$) for portraying and analyzing schedule performance

EVA-11 Jun 12-17, 2006

Prediction Comparisons

"Further Developments" in Earned Schedule Schedule Duration Prediction **Calculation of IEAC(t): short form IEAC(t) = Planned Duration / SPI(t) Planned Duration for Work Remaining PDWR = Planned Duration – Earned Schedule cum** Analogous to the EVM BCWR **Calculation of IEAC(t): long form**

IEAC(t) = Actual Time +

Performance Factor

PDWR

EVA-11 Jun 12-17, 2006

IEAC(t) Prediction Comparison Early and Late Finish Project Examples

IEAC(t) Metrics at Project Completion	
Early Finish Project	
Planned Duration (weeks)	25
Actual Time (weeks)	(22)
Percentage Complete cum	100%
CPI cum	2.08
SPI(t) cum	1.14
SPI(\$) cum	1.17
Critical Ratio cum	2.43
IEAC(t) PD/SPI(t) cum	22.0
IEAC(t) PD/SPI(\$) cum	21.4
IEAC(t) PD/CR cum	10.3

IEAC(t) Metrics at Project Completion	
Late Finish Project - pre ES	
Planned Duration (weeks)	20
Actual Time (weeks)	(34)
Percentage Complete cum	100%
CPI cum	0.52
SPI(t) cum	0.59
SPI(\$) cum	1.00
Critical Ratio cum	0.52
IEAC(t) PD/SPI(t) cum	34.0
IEAC(t) PD/SPI(\$) cum	20.0
IEAC(t) PD/ CR cum	38.7

In both examples, the <u>pre ES</u> predictors (in red) <u>fail</u> to correctly calculate the Actual Duration at Completion!

The ES predictor, SPI(t) alone <u>correctly</u> calculates the Actual Duration at Completion in both cases

EVA-11 Jun 12-17, 2006

"Further Developments" in Earned Schedule Schedule Duration Prediction (continued)

Pre ES formulae and results algebraically flawed

"... there is little theoretical justification for EVM practitioners continuing to use the pre ES predictors of schedule performance. Conversion to and use of the ES based techniques is strongly recommended."

- Kym Henderson

There's got to be a better method!

EVA-11 Jun 12-17, 2006

tion	IEAC(t) Metrics at Project Comp	IEAC(t) Metrics at Project Completion	
19	Late Finish Project using E	S	
25	Planned Duration (weeks)	20	
22)	Actual Time (weeks)	(34)	
25.0	Earned Schedule cum	20.0	
0.0	Planned Duration Work	0.0	
0.0	Remaining	0.0	
00%	Percentage Complete cum	100%	
2.08	CPI cum	0.53	
1.14	SPI(t) cum	0.59	
1.17	SPI(\$) cum	1.00	
2.43	Critical Ratio cum	0.52	
2.37	Critical Ratio ES cum	0.30	
22.0	IEAC(t) PF = SPI(t) cum	34.0	
22.0	IEAC(t) PF = SPI(\$) cum	34.0	
22.0	IEAC(t) PF = CR cum	34.0	
22.0	IEAC(t) PF = CR ES cum	34.0	
	the second se		

IEAC(t) Metrics at Project Completion		
Early Finish Project using ES		
Planned Duration (weeks)	25	
Actual Time (weeks)	(22)	
Earned Schedule cum	25.0	
Planned Duration Work	0.0	
Remaining	0.0	
Percentage Complete cum	100%	
CPI cum	2.08	
SPI(t) cum	1.14	
SPI(\$) cum	1.17	
Critical Ratio cum	2.43	
Critical Ratio ES cum	2.37	
IEAC(t) PF = SPI(t) cum	22.0	
IEAC(t) PF = SPI(\$) cum	22.0	
IEAC(t) PF = CR cum	22.0	
IEAC(t) PF = CR ES cum	22.0	

Use of the ES "long form" IEAC(t) formula, results in <u>correct</u> calculation of Actual Duration at Completion EVA-11 Copyright 2006

Jun 12-17, 2006

Lipke & Henderson

IEAC(t) Predictions using <u>ES</u> Techniques: Weekly Plots of IEAC(t) Late Finish Project Example

Commercial IT Infrastructure Expansion Project Phase 1

Earned Schedule, Independent Estimate At Completion (time) - IEAC(t) as at Project Completion: Week Starting 15th July xx

Planned Schedule — Earned Schedule cum — IEAC(t) PD/SPI(t)

EVA-11 Jun 12-17, 2006

IECD Predictions using <u>ES</u> Techniques: Weekly Plots of Independent Estimate of Completion Date

Commercial IT Infrastructure Expansion Project Phase 1 Earned Schedule, Independent Estimates of Completion Date (IECD) as at Project Completion: Week Starting 15th July xx

EVA-11 Jun 12-17, 2006

IEAC(t) Predictions using <u>ES</u> Techniques:

<u>ES formulae and results are algebraically correct</u>

"Whilst assessments of the predictive utility of the ES calculated IEAC(t) and the relative merits of using the various performance factors available are matters for further research and empiric validation, the theoretical integrity of ES now seems confirmed."

- Kym Henderson

EVA-11 Jun 12-17, 2006

2 My Experience Summarised

- Schedule Performance Indicators (for early and late finish projects):
 - SPI(t) & SV(t) do portray the real schedule performance in agreement with [1] [2]
- Forecasting Duration (for early and late finish projects):
 - at early & middle project stage: pre-ES & ES forecasts produce similar results
 - at late project stage: ES forecasts outperform all pre-ES forecasts in agreement with [2] [3]

Assessing Project Duration (for early and late finish projects):

- the use of the SPI(t) in conjunction with the TCSPI(t) has been demonstrated to be useful to manage the schedule expectations application of [3]
- [1] Lipke Walt, Schedule is Different, The Measurable News, Summer 2003
- [2] Henderson Kym, Earned Schedule: A Breakthrough Extension to Earned Value Theory? A Retrospective Analysis of Real Project Data, The Measurable News, Summer 2003
 [3] Henderson, Kym, Further Development in Earned Schedule, The Measurable News, Spring 2004

π Stephan Vandevoorde

IIPMC 2005 Fall Conference Rev.2

Demonstration of Earned Schedule Calculator

EVA-11 Jun 12-17, 2006

Earned Schedule Calculator

Earned Schedule Calculator (V1)

EVA-11 Jun 12-17, 2006

Earned Schedule Calculator

Earned Schedule Calculator (V2)

EVA-11 Jun 12-17, 2006

EVA-11 Jun 12-17, 2006

The PMB is an S-Curve. Does the linear interpolation introduce large ES error?
Is error larger where the S-Curve is steepest?
What affects the accuracy of the ES calculation?

EVA-11 Jun 12-17, 2006

I / 1 mo = p / qI = (p / q) * 1 mo $p = BCWP - BCWS_{C}$ $q = BCWS_{C+1} - BCWS_{C}$

 $I = \frac{BCWP - BCWS_{C}}{BCWS_{C+1} - BCWS_{C}} * 1mo$

EVA-11 Jun 12-17, 2006

ES = Number of whole months (C) + Increment on curve (F) = C + F ES(calc) = C + calculated increment (I) Error (δ) = I - F % error = $\frac{|\delta|}{C + F}$ Example = .05 / 8.12 = 0.6% As C \Rightarrow larger - % error \Rightarrow smaller - ES(calc) \Rightarrow more accurate

Weekly EV make ES more accurate

EVA-11 Jun 12-17, 2006

After a few months of status (C > 4) interpolation error is negligible ($\leq 3\%$) What about central portion of PMB, where S-Curve is steepest? Is error greater? Where slope is large, the resolution of the interpolation is maximized Curvature of PMB is minimized Interpolation error is negligible

EVA-11 Jun 12-17, 2006

Other Sources of Error

Partial Month – 1st month

 Much more significant than interpolation error
 Error decreases as C becomes larger
 Correctable – adjust calculator output

 Earned Value recorded

 By far, the largest source of ES error
 Low accuracy for EV ⇒ inaccurate ES

BREAK – 15 Minutes

EVA-11 Jun 12-17, 2006

Exercise – *Calculate ES, SV(t), SPI(t)*

EVA-11 Jun 12-17, 2006

Exercise # 1

Complete Early & Late Worksheets (tan areas only): ES, SV(t), SPI(t) Earned Schedule Formulas: ES = Nr of Completed BCWS Time Periods + Fraction of Uncompleted Period - Fraction = $(BCWP - BCWS_n) / (BCWS_{n+1} - BCWS_n)$ AT = Actual Time (number of periods from start) **Schedule Variance:** SV(t) = ES - ATSchedule Performance Index: SPI(t) = ES / AT

EVA-11 Jun 12-17, 2006

ES Exercise - Worksheet

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
BSWS(\$)	105	200	515	845	1175	1475	1805	2135	2435	2665	2760	2823
BCWP(\$)	115	220	530	870	1215	1525	1860	2190	2500	2740	2823	
SV(\$)	10	20	15	25	40	50	55	55	65	75	63	
SPI(\$)	1.095	1.100	1.029	1.030	1.034	1.034	1.030	1.026	1.027	1.028	1.023	
1.5 1.6	STAR.	all line	Sec. 25					Juli.	184	13500		
Month Count	1	2	3	4	5	6	7	8	9	10	11	12
ES(cum)		1					Contraction of the	1 State				
SV(t)					No.					6173		12-11
SPI(t)		19/2/		200	and the		ALC: NO					1000

Early Finish Project (Cumulative Values)

EVA-11 Jun 12-17, 2006

ES Exercise - Worksheet

	Year 01											Year 02			
100 0	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
BSWS(\$)	105	200	515	845	1175	1475	1805	2135	2435	2665	2760	2823			
BCWP(\$)	95	180	470	770	1065	1315	1610	1900	2150	2275	2425	2555	2695	2770	2823
SV(\$)	-10	-20	-45	-75	-110	-160	-195	-235	-285	-390	-335	-268	-128	-53	0
SPI(\$)	0.905	0.900	0.913	0.911	0.906	0.892	0.892	0.890	0.883	0.854	0.879	0.905	0.955	0.981	1.000
	1000	10.00	1.00				1000			271	512	100			
			1	and and	1.00	3110	- Later							10 200	
Month Count	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ES(cum)											271				
SV(t)					1								12.4		
SPI(t)		E.A			and a				1						

Late Finish Project (Cumulative Values)

EVA-11 Jun 12-17, 2006

ES Exercise - Answers

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	405	200	545	045	4475	4 475	1005	0405	0405	0005	0700	0000
B2AA2(\$)	105	200	515	845	1175	1475	1805	2135	2435	2005	2760	2823
BCWP(\$)	115	220	530	870	1215	1525	1860	2190	2500	2740	2823	
SV(\$)	10	20	15	25	40	50	55	55	65	75	63	
			1000	5407			Part and		1.5-3			1.5
SPI(\$)	1.095	1.100	1.029	1.030	1.034	1.034	1.030	1.026	1.027	1.028	1.023	
A STREET	1.50		and the second second		10 12	March V	510150	0	1000	The second		(19) A.
-				A set								1 1
Month Count	1	2	3	4	5	6	7	8	9	10	11	12
Month Count ES(mo)	1 1.105	2 2.063	3 3.045	4 4.076	5	6 6.152	7 7.167	8 8.183	9 9.283	10 10.789	11 12.000	12
Month Count ES(mo)	1 1.105 0.105	2 2.063	3 3.045 0.045	4 4.076 0.076	5 5.133 0.133	6 6.152 0.152	7 7.167 0.167	8 8.183 0.183	9 9.283 0.283	10 10.789 0.789	11 12.000	12
Month Count ES(mo) SV(t)	1 1.105 0.105	2 2.063 0.063	3 3.045 0.045	4 4.076 0.076	5 5.133 0.133	6 6.152 0.152	7 7.167 0.167	8 8.183 0.183	9 9.283 0.283	10 10.789 0.789	11 12.000 1.000	12

Early Finish Project (Cumulative Values)

EVA-11 Jun 12-17, 2006

SV(t)

SPI(t)

Year 02 Year 01 Sep Feb Jan Feb Mar Apr Mav Jun Jul Aua Oct Nov Dec Jan Mar BSWS(\$) 1175 1475 1805 2135 2435 2665 105 200 515 845 2760 2823 ---------------BCWP(\$) 180 470 1065 1315 1610 1900 2150 2275 2425 2555 2695 95 770 2770 2823 SV(\$) -20 -110 -160 -195 -235 -285 -390 -335 -10 -45 -75 -268 -128 -53 0 0.900 0.906 0.892 0.892 0.890 0.883 0.854 0.879 SPI(\$) 0.905 0.913 0.911 0.905 0.955 0.981 1.000 Month Count 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ES(mo) 7.288 9.522 11.159 0.905 1.789 2.857 3.772 4.667 5.547 6.409 8.050 8.467 8.967 10.316 12.000 -0.095 -0.211 -0.143 -0.228 -0.333 -0.533 -0.591 -0.712 -0.950 -1.533 -2.033 -2.478 -2.684 -2.841 -3.000

ES Exercise - Answers

Late Finish Project (Cumulative Values)

0.916

0.911

EVA-11 Jun 12-17, 2006

0.905

0.894

0.952

0.943

0.933

0.911

Copyright 2006 Lipke & Henderson

0.894

0.847

0.815

0.794

0.794

0.797

0.800

Status Update

Early Adopters

EVM Instructors

- PMA, Management Technologies ...
- Boeing Dreamliner®, Lockheed Martin, US State Department, Secretary of the Air Force, UK MoD
- Several Countries Australia, Belgium, Sweden, UK, USA ...
- Applications across weapons programs, construction, software development, ...
- Range of project size from very small and short to extremely large and long duration

EVA-11 Jun 12-17, 2006

PMI-CPM EVM Practice Standard

- Inclusion of Emerging Practice Insert into PMI - EVM Practice Standard
 - Dr. John Singley, VP of CPM
- Included in Box 3-1 of EVM Practice Standard
 - Describes basic principles of "Earned Schedule"
 - Provides foundation for acceptance as a valid extension to EVM
- EVM Practice Standard released at 2004 IPMC Conference

8V = EV - PV = 32 - 48 = -18 8PI = EV / PV = 32 / 48 = 0.8 If the work were to continue at this rate, then all of the work of Project EZ would take 18 months to accomplish instead of the 12 months planned (12 / 0.6667 = 18). These SV and SPI measures are useful indicators and predictors of performance and results. But, because they are based on work and not time, they can behave in ways that are not normally expected of schedule indicators and predictors. The problem can be illustrated with Project EZ: Whether all of the work is completed as planned at 12 months or at 18 months as predicted by the four-month SPI of 0.67, it will be completed eventually and at that time the work-based schedule variance and performance index will indicate perfect performance. For when the work is completed: EV - PV, and so SV 0 and SPI = 1.0. This is fine if the work is being accomplished according to plan, but problematic if it is not. If Project EZ does take 18 months, SV will nonetheless equal 0 and SPI equal 1.0, when it's clear that Project EZ is 6 months late and averaged only 67% efficiency There is an emerging practice in EVM, which uses time-based measures of schedule variance and schedule performance as an alternative or supplement to the traditional work-based measures. This new method avoids the problems of the work-based method illustrated above. Whereas the traditional work-based method compares work performed and work scheduled at or to a point in time, the time-based method compares the actual time with the planned time for the work performed. In the case of Project EZ, the work performed after four months (AT = 4) had a planned time of three months (PT = 3) Irefer to Figures 2-6 and 2-7]. In a manner that parallels the use of AC and EV in traditional EVM, practitioners are beginning to use actual time (AT) and planned time (PT) to compute SV and SPI: 8V(t) = PT – AT = 3 – 4 = –1 m on th 8PI(t) = PT / AT = 3 / 4 = 0.76 While the work- and time-based methods provide comparable results at the four-month point in Project EZ, look at the difference at project completion after 18 months: 8V(b = PT - AT = 12 - 18 = - 8 months 8PI(b = PT / AT = 12 / 18 = 0.8) 8V(8) = EV - PV = 160 - 160 = 0 8PI(\$) = EV / PV = 150 / 150 = 1.0

Box 3-1: Time-Based Schedule Measures -- An Emerging EVM Practice

In the current practice of EVM, schedule variance and schedule performance are both measures of work scope, not time. The work is represented by its budgeted cost as recorded in the performance measurement baseline. The EVM schedule variance is the difference between work performed and work scheduled, and the schedule performance

Index is the ratio of work performed to work scheduled. For Project EZ, these measures indicate that work is not being accomplished as guickly or as efficiently as planned:

EVA-11 Jun 12-17, 2006

Available Resources

PMI-Sydney <u>http://sydney.pmichapters-australia.org.au/</u> Repository for ES Papers and Presentations Earned Schedule Website http://www.earnedschedule.com/ Established February 2006 Contains News, Papers, Presentations, ES Terminology, ES Calculators Identifies Contacts to assist with application Wikipedia now references Earned Schedule http://en.wikipedia.org/wiki/Earned Schedule

EVA-11 Jun 12-17, 2006

Foreseen Uses of Earned Schedule

- Enables independent evaluation of schedule estimates: ETC(t), EAC(t)
 - Client, Contractor, Program and Project Manager
- Facilitates insight into network schedule performance
 - Duration based Schedule indicators
 - Identification of impediments/constraints and potential future rework
 - Evaluation of adherence to plan
- Improvement to Schedule and Cost prediction
 - Client, Contractor, Program and Project Manager
- Application of direct statistical analysis of schedule performance

3 Research Efforts (2/3)

Extracted results from [8]: Forecast Accuracy and the Completion of Work

Simulation runs performed: 1 run project finish ahead of schedule, 1 run projects finish behind

Plans are made to present the research report "A simulation and evaluation of earned value metrics to forecast the project duration" at the 22nd PMI-CPM Spring Conference 2006.

[8] Vanhoucke Mario, Vandevoorde Stephan, <u>A simulation and evaluation of earned value metrics to</u> <u>forecast the project duration</u> , Working Paper 2005/317, July 2005, Ghent University

IPMC 2005 Fall Conference - ES Practice Symposia Final 9

 π Stephan Vandevoorde

Summary - Basic

EVA-11 Jun 12-17, 2006

Summary - Basic

Derived from EVM data ... only Provides time-based schedule indicators Indicators do not fail for late finish projects Application is scalable up/down, just as is EVM Schedule prediction is better than any other EVM method presently used SPI(t) behaves similarly to CPI IEAC(t) = PD / SPI(t) behaves similarly to IEAC = BAC / CPI

Summary - Basic

- Schedule prediction much easier and possibly better than "bottoms-up" schedule analysis
 Application is growing in both small and large projects
 Practice recognized as "Emerging Practice"
 Resource availability enhanced with ES website
- and Wikipedia
- Research indicates ES superior to other methods

BREAK – 15 Minutes

EVA-11 Jun 12-17, 2006

Earned Schedule Training Advanced

EVA-11 Jun 12-17, 2006

Analysis Tool Demonstration

EVA-11 Jun 12-17, 2006

Earned Schedule Analysis Tool

Earned Schedule Analysis Tool

EVA-11 Jun 12-17, 2006

ES and Re-Baselining

EVA-11 Jun 12-17, 2006

ES and Re-Baselining

ES indicators are affected by re-baselining Behaviour of SV(t) and SPI(t) is analogous to CV and CPI See examples PMB change affects schedule prediction similarly to cost Earned Schedule brings attention to the potential schedule impact of a declared "cost only" change

EVA-11 Jun 12-17, 2006

Earned Schedule – Re-Baseline Example Real project data – <u>nominal</u> re-baseline

EVA-11 Jun 12-17, 2006

Duration (Weeks)

Jun 12-17, 2006

72

Critical Path Study

EVA-11 Jun 12-17, 2006

Critical Path Study Outline

The Scheduling Challenge Case Study Project The project The EVM, Earned Schedule and Network Schedule approach Earned Schedule vs Critical Path predictors <u>Real</u> Schedule Management with Earned Schedule Initial experience and observation

EVA-11 Jun 12-17, 2006

The Scheduling Challenge

A realistic project schedule is dependent on multiple, often complex factors including accurate:

- Estimation of the tasks required,
- Estimates of the task durations
- Resources required to complete the identified tasks
- Identification and modeling of dependencies impacting the execution of the project
 - Task dependencies (e.g. F-S process flows)
 - Dependent" Milestones (internal and external)
 - "Other logic"

EVA-11 Jun 12-17, 2006

The Scheduling Challenge

From small projects into large projects and programs, scheduling requirements becomes exponentially more complex

Integration

- Of schedules between "master" and "subordinate" schedules
- Often across multiple tiers of
 - Activities and
 - Organisations

contributing to the overall program of work

<u>Essential</u> for producing a <u>useful</u> integrated master schedule

EVA-11 Jun 12-17, 2006

To further compound schedule complexity

Once an initial schedule baseline has been established progress monitoring <u>inevitably</u> results in changes

- Task and activity durations change because "actual performance" does not conform to plan
- Additional <u>unforeseen</u> activities may need to be added
- Logic changes as a result of corrective actions to contain slippages; and
- Improved understanding of the work being undertaken
- Other "planned changes" (Change Requests) also contribute to schedule modifications over time

EVA-11 Jun 12-17, 2006

Wouldn't it be nice

To be able to explicitly declare "Schedule Reserve" in the project "schedule of record" Protect committed key <u>milestone</u> delivery dates To have schedule macro level indicators and predictors Ideally, derived separately from the network schedule! Provides a means for comparison and validation of the measures and predictors provided by the network schedule An independent predictor of project duration would be a particularly useful metric "On time" completion of projects usually considered important Just like EVM practitioners have for cost The potential offered by Earned Schedule

EVA-11 Jun 12-17, 2006

Case Study Project

Commercial sector software development and enhancement project Small scale: 10 week Planned Duration Time critical: Needed to support launch of revenue generating marketing campaign Cost budget: 100% labour costs Mixture of: 3 tier client server development Mainframe, Middleware, Workstation 2 tier client server development Mainframe to Workstation direct

EVA-11 Jun 12-17, 2006

The EVM and ES Approach

Microsoft Project 2002 schedule

- Resource loaded for time phased effort and cost estimation
- Control Account Work Package views developed in the schedule
- Actual Costs captured in SAP time recording system
 - Limited (actual) cost schedule integration
- Contingency (Management Reserve) managed outside the schedule
- Top level Planned Values cum "copied and pasted" into Excel EVM and ES template
 - High level of cost schedule integration achieved

EVA-11 Jun 12-17, 2006

Schedule Management

Weekly schedule updates from week 3 focusing on: Accurate task level percentage work completion updates The project level percentage work completion (cumulative) calculated by Microsoft Project Percentage work complete transferred to the EVM and ES template to derive the progressive Earned Value (cumulative) measure Schedule review focusing on critical path analysis Schedule updates occurred as needed with Revised estimates of task duration and Changes to network schedule logic particularly when needed to facilitate schedule based corrective action Actual costs entered into the EVM and ES template as they became available (weekly)

EVA-11 Jun 12-17, 2006

An Integrated Schedule Analysis Chart Critical Path, IECD, SPI(t) and SPI(\$) on one page

EVA-11 Jun 12-17, 2006

Schedule Analysis

Initial expectation

The critical path predicted completion date would be more pessimistic than the IECD

- In fact
 - The ES IECD trend line depicted a "late finish" project with improving schedule performance
 - The critical path predicted completion dates showed an "early finish project" with deteriorating schedule performance

Became the "critical question" in Week 8

- ES IECD improvement trend reversed
- Continued deterioration in the critical path predicted completion dates

EVA-11 Jun 12-17, 2006

Schedule Analysis Result

IECD the more credible predictor in this circumstance Work was not being accomplished at the rate planned No adverse contribution by critical path factors • e.g. Externally imposed delays caused by "dependent milestone" Two weeks schedule delay communicated to management Very late delay of schedule slippage a very sensitive issue Corrective action was immediately implemented Resulted in two weeks progress in one week based on IECD improvement in week 9 Project substantively delivered to the revised delivery date

EVA-11 Jun 12-17, 2006

The IECD vs Critical Path Predictors

Network schedule updates do not usually factor past (critical path) task performance into the future
 Generally concentrate on the <u>current</u> time window
 Task updates
 Corrective action to try and contain slippages

Critical path predicted completion date is not usually calibrated by past actual schedule performance
 The ES IECD

Cannot directly take into account critical path information
 BUT does calibrate the prediction based on historic schedule performance as reflected in the SPI(t)

EVA-11 Jun 12-17, 2006

Further Observations

Much has been written about the consequences of not achieving work at the EVM rate planned At very least, incomplete work needs to be rescheduled ... Immediate critical vs non critical path implication requires detailed analysis of the network schedule <u>Sustained</u> improvement in schedule performance is a difficult challenge SPI(t) remained in the .7 to .8 band for the entire project! In spite of the corrective action and recovery effort Any task delayed <u>eventually</u> becomes critical path if not completed SPI(t) a very useful indicator of schedule performance Especially later in the project when SPI(\$) was resolving to 1.0

EVA-11 Jun 12-17, 2006

Questions of Scale

We know that ES is scalable as is EVM Issues of scale did not arise due to small size of the project Detailed analysis of the ES metrics is required The same as EVM for cost The "masking" or "washout" effect of negative and positive ES variances at the detailed level can be an issue The same as EVM for cost Apply Earned Schedule to the Control Accounts and Work Packages on the critical path And "near" critical path activities Earned Schedule augments network schedule analysis it doesn't replace it Just as EVM doesn't replace a bottom up ETC and EAC

EVA-11 Jun 12-17, 2006

<u>Real</u> Schedule Management with Earned Schedule

ES is of considerable benefit in analysing and managing schedule performance

- The "time critical" dichotomy of reporting "optimistic" predicted task completions and setting and reporting realistic completion dates was avoided
 - ES metrics provided an <u>independent</u> means of sanity checking the critical path predicted completion date
 Prior to communicating overall schedule status to
 - Prior to communicating overall schedule status to management
- ES focused much more attention onto the network schedule than using EVM alone

EVA-11 Jun 12-17, 2006

Final Thoughts

ES is expected be of considerable value to the schedule management for large scale projects and programs

- Exponential increase in the network scheduling complexities
- Unavoidable and necessary on those programs and so
- The need and benefit of an independent means of sanity checking schedules of such complexity is much greater

ES is anticipated to become the "bridge" between EVM and the Network Schedule

EVA-11 Jun 12-17, 2006

Network Schedule Analysis

EVA-11 Jun 12-17, 2006

Schedule Analysis with EVM?

The general belief is EVM cannot be used to predict schedule duration
Most practitioners analyze schedule from the bottom up using the networked schedule "It is the only way possible."
Analysis of the Schedule is overwhelming
Critical Path is used to shorten analysis *(CP is longest path of the schedule)*

EVA-11 Jun 12-17, 2006

Schedule Analysis with EVM?

Duration prediction using Earned Schedule provides a macro-method similar to the method for estimating Cost
 A significant advance in practice
 But, there's more that ES facilitates

Earned Schedule Bridges EVM to "Real" Schedule

Cody

How Can This Be Used?

- Tasks behind possibility of impediments or constraints can be identified
- Tasks ahead a likelihood of future rework can be identified
- The identification is independent from schedule efficiency
- The identification can be automated

PMs can now have a schedule analysis tool connected to the EVM Data!!

EVA-11 Jun 12-17, 2006

BREAK – 15 Minutes

EVA-11 Jun 12-17, 2006

Earned Value Research

EVA-11 Jun 12-17, 2006

Earned Value Research

 Most research conducted since 1990

 Result of cancellation of Navy A-12 Avenger
 Primary researcher, Dr. David Christensen, Southern Utah University
 Cost studies using very large DOD projects

 EVM Literature on Dr. Christensen's Website http://www.suu.edu/faculty/christensend/ev-bib.html

Results from EV Research

Dr. Christensen's & associates' findings
CPI stabilizes @ 20% complete
CPI tends to worsen as EV ⇒ BAC
[CPI(final) - CPI(20%)] ≤ 0.10
IEAC = BAC / CPI ≤ Final Cost when Percent Complete is 20% ⇔ 70%

Discussion of EV Research CPI tends to worsen as $EV \Rightarrow BAC$ $IEAC = BAC / CPI \leq Final Cost$ when Percent Complete is $\geq 20\%$ IEAC condition must be true if CPI tendency is true Rationale supporting CPI tendency Rework increasing as EV approaches BAC Late occurring impacts from constraints/impediments Lack of available EV toward end of project My conjecture: SPI(t) & IEAC(t) = PD / SPI(t) behave similarly to CPI & IEAC = BAC / CPI

EVA-11 Jun 12-17, 2006

CPI & IEAC Behavior

Jun 12-17, 2006

Lipke & Henderson

EVA-11 Jun 12-17, 2006

EV isn't connected to task sequence Hypothesis: Completion sequence of tasks affects performance efficiency Incorrect task sequencing occurs when there is.. Impediment or constraint Poor process discipline Improper performance sequence may cause ... Overloading of constraint Performance of tasks w/o complete inputs

EVA-11 Jun 12-17, 2006

Result from improper performance sequence ... Constraint limited output

- Schedule lengthens
- Cost increases while waiting (when other EV available is severely limited)

Rework occurs (~ 50%)

- Schedule lengthens
- Cost escalates

Constraint problem & Rework appear late causing ...

CPI & SPI(t) to decrease as $EV \Rightarrow BAC$

- Schedule Adherence measure is used to enhance the EVM measures
 - Early warning for later cost and schedule problems
 - Proposed Measure: In accordance with the project plan, determine the tasks which should be completed or started for the duration associated with ES. Compare the associated PV with the EV of the tasks which directly correspond. Calculate the ratio:

P = Tasks (perf - corr) / Tasks (plan)= $\Sigma EV_j (corresponding) / \Sigma PV_j (plan)$ where $\Sigma EV_j \le \Sigma PV_j \ \& \ \Sigma PV_j = EV$

EVA-11 Jun 12-17, 2006

Characteristics of the P measure P measure cannot exceed 1.0 $0 \le P \le 1.0$ At project completion P = 1.0 P is likely unstable until project is 20% complete {similar to the behavior of CPI} The behavior of P may explain Dr. Christensen's findings for CPI & IEAC P used to compute effective earned value {EV(e)}

Effective Earned Value

EVA-11 Jun 12-17, 2006

Effective Earned Value

Effective EV

Total EV

EV(r) is performed at risk of creating rework Portion colored is usable Portion colored is unusable

EVA-11 Jun 12-17, 2006 Copyright 2006 Lipke & Henderson EV(r)

Effective EV Relationships

P-Factor (or P) = ΣEVj / ΣPVj = ΣEVj / EV ΣEVj = P * EV
EV(p) is portion of EV consistent with the plan EV(p) = ΣEVj = P * EV
EV(r) is portion of EV with anticipated rework EV(r) = EV - EV(p) = EV - P * EV EV(r) = (1 - P) * EV

EVA-11 Jun 12-17, 2006

Effective EV Relationships

Rework proportion (R%) = f(r) / f(p) f(r) = fraction of EV(r) unusable f(p) = fraction of EV(r) usable f(r) + f(p) = 1
Portion of EV(r) usable f(p) * R% + f(p) = 1 f(p) = 1 / (1 + R%)

EVA-11 Jun 12-17, 2006

Effective Earned Value

Effective earned value is a function of EV, P, and Rework: EV(e) = f (EV, P, Rework) EV(e) = EV(p) + (fraction usable) * EV(r)= P * EV + (1 / 1 + R%) * [(1 - P) * EV]General equation for Effective Earned Value EV(e) = [(1 + P * R%)/(1 + R%)] * EVSpecial case, when R% = 50%EV(e) = [(P + 2)/3] * EV

EVA-11 Jun 12-17, 2006

Effective Earned Value

Effective ES is computed using EV(e) {*i.e., ES(e)*}
Effective EV and ES indicators are ...
CV(e) = EV(e) - AC
CPI(e) = EV(e) / AC
SV(te) = ES(e) - AT
SPI(te) = ES(e) / AT

Graphs of CPI, CPI(e) & P - Factor (notional data)

Graphs of CPI & SPI(t) with the P - Factor

Jun 12-17, 2006

Lipke & Henderson

Forecasting with Effective Earned Value

EVA-11 Jun 12-17, 2006

Forecasting with Effective Earned Value

Schedule Prediction

IEAC(te) = PD / SPI(te)

Cost Prediction

IEAC(e) = BAC / CPI(e)

EVA-11 Jun 12-17, 2006

Schedule & Cost Prediction

Jun 12-17, 2006

Lipke & Henderson

Summary: Effective Earned Value

- Lack of adherence to the schedule causes EV to misrepresent project progress
- P indicator introduced to measure schedule adherence
- Effective EV calculable from P, R% and EV reported
- Prediction for both final cost and project duration hypothesized to be improved with *Effective Earned Value*

EVA-11 Jun 12-17, 2006

Statistical Prediction

EVA-11 Jun 12-17, 2006

Statistical Prediction

Statistical Process Control
Planning for Risk
Performance Indication & Analysis
Outcome Prediction

Application Problems

Distributions of periodic values of CPI & SPI(t) are right-skewed
 Logarithms transform to Normal Distribution
 Research indicates CPI tends to worsen as EV ⇒ BAC

Statistics application assumes lack of any tendency

Effective EV used to remove tendency

EVA-11 Jun 12-17, 2006

Statistical Process Control

SPC is a Quality method used to identify anomalous behavior of the process
For application to CPI and SPI(t), SPC is used to identify anomalous periodic performance
Clarifies "true" performance
Allows better analysis
Improves prediction

EVA-11 Jun 12-17, 2006

Statistical Process Control

EVA-11 Jun 12-17, 2006

Planning for Risk

- Risk mitigation ⇒ Schedule Reserve
 Data needed
 - Performance variation from similar historical project [Standard Deviation = σ_{H}]
 - Planned Duration of new project [provides the number of performance observations (n)]
 - Variation of Means (In SPI(t)_m⁻¹) = $\sigma_H / \sqrt{n} = \sigma_m$
 - Probability of Success Desired (PS)

Planning for Risk

Jun 12-17, 2006

Lipke & Henderson

Performance Indication & Analysis

Performance Window Indicator
 Combines CPI & SPI(t) onto one chart
 Depiction is invariant to project size
 Provides visual of performance in relation to Plan & Negotiated requirement
 Illustrates diminishing opportunity for recovery
 Provides *Probability of Success* separately for Cost & Schedule

EVA-11 Jun 12-17, 2006

Outcome Prediction

Apply SPC to establish "true" performance for CPI & SPI(t)

Residual Cumulative value
Standard Deviation of periodic performance

Compute the adjustment for accomplished portion of project
Compute adjusted Standard Deviation of the Means (σ_{*})

Outcome Prediction

Using the results ...

- Determine Confidence Limits for the Performance Window – e.g., 95% confidencethat is, the high and low expectations for performance
- Calculate *Probability of Success* for both Cost & Schedule separately

Summary - Advanced

EVA-11 Jun 12-17, 2006

Summary - Advanced

Project analysis tool [EV & ES application]
Re-baseline impacts SPI(t) similarly to CPI
Duration prediction from ES much easier than using Critical Path analysis ...and may be better
Network schedule analysis enhanced by ES
Identifies future problems & today's impediments

Summary - Advanced

ES connects EV to the schedule
 Schedule Adherence
 Effective Earned Value
 Possible enhancement of outcome prediction for schedule & *cost* Statistical techniques provide facility to improve planning, analysis, and outcome prediction

Quiz & Discussion

EVA-11 Jun 12-17, 2006

What is the problem with the EVM schedule indicators, SV and SPI?

They measure schedule performance in \$\$
They sometimes are erroneous
They can be poor predictors of outcome
All of the above

EVA-11 Jun 12-17, 2006

Why do SPI & SV fail to provide reliable schedule information ?

EVM measures schedule performance in \$\$
PV & EV are constrained to BAC
They are not related to the networked schedule
All of the above

EVA-11 Jun 12-17, 2006

What elements are required to compute Earned Schedule?

AT & EV
AC & PMB
EV & PV
EV & PMB
All of the above

EVA-11 Jun 12-17, 2006

What does Earned Schedule measure?

Time at which Actual Cost appears on PMB
 Time at which Planned Value equals Earned Value

Time at which Earned Value is reported
None of the above

EVA-11 Jun 12-17, 2006

The equation for Earned Schedule is ES_{cum} = C + I. How is I calculated?

I must be determined graphically
I = EV / PV
I = (EV − PV_C) / (PV_{C+1} − PV_C)
I = ΔEV / ΔPV

EVA-11 Jun 12-17, 2006

What is the largest source of error for the Earned Schedule measure?

Earned Value reported
Interpolated portion of the ES value
Earned Value accounting practice
Crediting first month as a full month

EVA-11 Jun 12-17, 2006

Earned Schedule can be used to provide information about future rework and project constraints and impediments.

EVA-11 Jun 12-17, 2006

What fundamental elements are needed to predict the completion date for a project?

Date + AC, EV, PV
Date + AC, AT, PMB
Date + PMB, EV, AT
Date + PV, PMB, AT
Date + ES, AT, PD

EVA-11 Jun 12-17, 2006

What does the P-Factor help us understand about project performance?

How closely the project is following its plan
Why performance has the tendency to become less efficient as EV ⇒ BAC
Improves analysis of true project accomplishment
All of the above

EVA-11 Jun 12-17, 2006

How does Effective Earned Value differ from Earned Value?

Effective EV ≤ EV
Effective EV accounts for rework
Allows for earlier prediction of final project outcome
All of the above
None of the above

EVA-11 Jun 12-17, 2006

Wrap-Up

EVA-11 Jun 12-17, 2006

Wrap Up

Derived from EVM data ... only Provides time-based schedule indicators Indicators do not fail for late finish projects Application is scalable up/down, just as is EVM Schedule prediction is better than any other EVM method presently used SPI(t) behaves similarly to CPI IEAC(t) = PD / SPI(t) behaves similarly to IEAC = BAC / CPI

Wrap Up

Schedule prediction – much easier and possibly better than "bottoms-up" schedule analysis
Facilitates bridging EVM to schedule analysis
Identification of Constraints / Impediments and Rework
Calculation of Schedule Adherence

Creation of Effective Earned Value

Leads to improved Schedule & Cost Forecasting

EVA-11 Jun 12-17, 2006 Copyright 2006 Lipke & Henderson

Conclusion

 "Whatever can be done using EVM for Cost Analysis can also be done using Earned Schedule for Schedule Analysis"
Earned Schedule

 A powerful new dimension to Integrated Project Performance Management (IPPM)
A breakthrough in theory and application

EVA-11 Jun 12-17, 2006 Copyright 2006 Lipke & Henderson

the first scheduling system 146

Contact Information

Walt Lipke		Kym Henderson
<u>waltlipke@cox.net</u>	Email	<u>kym.henderson@froggy.com.au</u>
(405) 364-1594	Phone	61 414 428 537

EVA-11 Jun 12-17, 2006 Copyright 2006 Lipke & Henderson