Earned Schedule Training

Instructors

Walt Lipke
waltilipke@cox.net (405) $364-1594$

Kym Henderson
Education Director
PMI Sydney, Australia Chapter
kym.henderson@froggy.com.au
61414428537

Earined Schedule Training Basic

EVM Schedule Indicators
Introduction to Earned Schedule

- Concept \& Metrics
- Indicators
- Predictors
- Terminology

Earned Schedule Training Basic

Application of Concept

- Analysis \& Verification
- Prediction Comparisons
- Demonstration of ES Calculator
- V1 \& V2 Calculators
\lrcorner Interpolation Error

Earined Schedule Training Basic

Exercise - Calculate ES, SV(t), SPI(t)
Status Update

- Applications
- PMI-CPM Earned Value Practice Standard
- ES Website

Summary - Basic

Earned Schedule Training Advanced

Analysis Tool Demonstration

- Re-Baseline Effects
-Critical Path Study
\lrcorner Network Schedule Analysis
- Impediments / Constraints
- Rework

Earned Schedule Training Advanced

- EV Research
- Schedule Adherence
\rightarrow Effective Earned Value
- Derivation
- Indicators
- Prediction

Earined Schedule Training Advanced

Statistical Prediction

- Statistical Process Control
- Planning for Risk
- Performance Indication \& Analysis
- Outcome Prediction
- Summary - Advanced

Quiz \& Discussion

- Wrap Up

Earned Schedule Training Basic

Earned Value Management Schedule Indicators

EVM Schedule Indicators

EVM Schedule Indicators

\lrcorner SV \& SPI behave erratically for projects behind schedule
SPI improves and concludes at 1.00 at end of project
SV improves and concludes at $\$ 0$ variance at end of project
Schedule indicators lose predictive ability over the last third of the project

EVM Schedule Indicators

Hhy does this happen?
-SV = BCWP - BCWS

- SPI = BCWP / BCWS
\lrcorner At planned completion BCWS $=$ BAC
\lrcorner At actual completion BCWP $=$ BAC
When actual $>$ planned completion
$-S V=B A C-B A C=\$ 000$
- SPI = BAC / BAC = 1.00

Regardless of lateness!!

Introduction to Earned Schedule

Earned Schedule Concept

EVA-11
Jun 12-17, 2006
Copyright 2006
Lipke \& Henderson

Earned Schedule Metrics

\lrcorner Requilired measures
Performance Management Baseline (PMB) the time phased planned values (BCWS) from project start to completion

- Earned Value (BCWP) - the planned value which has been "earned"
- Actual Time (AT) - the actual time duration from the project beginning to the time at which project status is assessed
\lrcorner All measures available from EVM

Earned Schedule Metrics

$-\mathrm{ES}_{\text {cum }}$ is the:
Number of completed BCWS time increments BCWP exceeds + the fraction of the incomplete BCWS increment

- $\mathrm{ES}_{\text {cum }}=\mathrm{C}+$ I where:
$C=$ number of time increments for $B C W P \geq B C W S$
$\mathrm{I}=\left(\mathrm{BCWP}-\mathrm{BCWS}_{\mathrm{C}}\right) /\left(\mathrm{BCWS}_{\mathrm{C}+1}-\mathrm{BCWS}_{\mathrm{C}}\right)$
\lrcorner ESperiod $(n)=\operatorname{EScum}(n)-\operatorname{EScum}(n-1)=\Delta E_{\text {cum }}$
- ATcum

ATperiod $(n)=\operatorname{ATcum}(n)-\operatorname{ATcum}(n-1)=\Delta A T_{\text {cum }}$
$\Delta A T_{\text {cum }}$ is normally equal to 1

Earned Schedule Indicators

Schedule Variance: SV(t)

- Cumulative: $\operatorname{SV}(\mathrm{t})=E \mathrm{ES}_{\text {cum }}-\mathrm{AT}_{\text {cum }}$
- Period: $\Delta \mathrm{SV}(\mathrm{t})=\Delta \mathrm{ES}_{\text {cum }}-\Delta \mathrm{A} \mathrm{c}_{\text {cum }}$
\lrcorner Schedule Performance Index: SPI(t)
- Cumulative: $\operatorname{SPI}(t)=E S_{\text {cum }} /$ AT cum
- Period: Δ SPI $(\mathrm{t})=\Delta E S_{\text {cum }} / \Delta A T_{\text {cum }}$

Earned Schedule Indicators

What happens to the ES indicators, SV(t$)$ \& SPI(t), when the planned project duration (PD) is exceeded (BCWS = BAC)?

They Still Work ...Correctly!!

- ES will be \leq PD, while AT > PD
- SV(t) will be negative (time behind schedule)
- SPI(t) will be < 1.00

Reliable Values from Start to Finish !!

SV Comparison

EVA-11
Jun 12-17, 2006

Copyright 2006
Lipke \& Henderson

SPI Comparison

EVA-11
Jun 12-17, 2006

Copyright 2006
Lipke \& Henderson

Earned Schedule Predictors

\lrcorner Can the project be completed as planned?

- TSPI = Plan Remaining / Time Remaining

$$
=(P D-E S) /(P D-A T)
$$

where (PD - ES) $=$ PDWR
PDWR = Planned Duration for Work Remaining
$-\mathrm{TSPI}=(P D-E S) /(E D-A T)$
where ED = Estimated Duration

TSPI Value	Predicted Outcome
≤ 1.00	Achievable
>1.10	Not Achievable

Earned Schedule Predictors

\lrcorner Long time goal of EVM ...Prediction of total project duration from present schedule status
\lrcorner Independent Estimate at Completion (time)
$-\operatorname{IEAC}(t)=$ PD $/ \operatorname{SPI}(t)$
$-\operatorname{IEAC}(t)=A T+(P D-E S) / P F(t)$ where $P F(t)$ is the Performance Factor (time)
Analogous to IEAC used to predict final cost
Independent Estimated Completion Date (IECD)

- IECD $=$ Start Date + IEAC(t)

Earned Schedule Terminology

	EVM	Earined Schedule
Status	Earned Value (EV)	Earned Schedule (ES)
	Actual Costs (AC)	Actual Time (AT)
	SV	SV(t)
	SPI	SPI(t)
Future Work	Budgeted Cost for Work Remaining (BCWR)	Planned Duration for Work Remaining (PDWR)
	Estimate to Complete (ETC)	Estimate to Complete (time) ETC(t)
Prediction	Variance at Completion (VAC)	Variance at Completion (time) VAC(t)
	Estimate at Completion (EAC) (supplier)	Estimate at Completion (time) EAC(t) (supplier)
	Independent EAC (IEAC) (customer)	Independent EAC (time) IEAC(t) (customer)
	To Complete Performance Index (TCPI)	To Complete Schedule Performance Index (TSPI)

Earned Schedule Terminology

Metrics	Earned Schedule	$E S_{\text {cum }}$	$\mathrm{ES}=\mathrm{C}+\mathrm{I}$ number of complete periods (C) plus an incomplete portion (I)
	Actual Time	AT $\mathbf{c}_{\text {cum }}$	AT = number of periods executed
Indicators	Schedule Variance	SV(t)	SV(t) = ES - AT
	Schedule Performance Index	SPI(t)	$\mathbf{S P I}(\mathrm{t})=\mathrm{ES} / \mathrm{AT}$
	To Complete Schedule Performance Index	TSPI(t)	TSPI(t) $=(\mathrm{PD}-\mathrm{ES}) /(\mathrm{PD}-\mathrm{AT})$
			TSPI(t) $=(\mathrm{PD}-\mathrm{ES}) /(\mathrm{ED}-\mathrm{AT})$
Predictors	Independent Estimate at Completion (time)	IEAC(t)	$\operatorname{IEAC}(\mathrm{t})=\mathrm{PD} / \mathrm{SPI}(\mathrm{t})$
			$\operatorname{IEAC}(\mathrm{t})=\mathrm{AT}+(\mathrm{PD}-\mathrm{ES}) / \mathrm{PF}(\mathrm{t})$

Earned Schedule Key Points

- ES Indicators constructed to behave in an analogous manner to the EVM Cost Indicators, CV and CPI
SV(t) and SPI(t)
- Not constrained by BCWS calculation reference
- Provide duration based measures of schedule performance
- Valid for entire project, including early and late finish
- Facilitates integrated Cost/Schedule

Management (using EVM with ES)

Application of Concept (Using Real Project Data)

ES Applied to Real Project Data: Latte Finish Project: SV(\$) and SV(t)

EVA-11
Jun 12-17, 2006

ES Applied to Real Project Data: Late Finish Project Analysis

\lrcorner No EVMM data prior to week 11
\lrcorner SV $(\$)$ and $S V(t)$ show strong correlation until week 19

- Week 20 (The week of the project's scheduled completion)

Client delay halted project progress until resolution in Week 26
\lrcorner SV($\$$) static at $-\$ 17,500$ in spite of schedule delay

- Before trending to $\$ 0$ at proiect completion
- SV(t) correctly calculates and displays
- Week on week schedule delay
- Project -14 week schedule delay at completion
\lrcorner Conclusion
SV(t) provides greater management utility than SV(\$) for portraying and analyzing schedule performance

Early Finish Project: SV(\$) and SV(t)

Commerical IT Infrastructure Expansion Project: Phases 2 \& 3 Combined Cost and Schedule Variances

 as at Project Completion: Week Starting 9th October xx\rightarrow Target SV \& CV $\rightarrow-\mathrm{CV}$ cum $\rightarrow-\mathrm{SV}(\$)$ cum $*$ SV (t$)$ cum

Early Pinish Project Analysis

- This project completed 3 weeks ahead of schedule
- In spite of externally imposed delay between weeks 16 and 19
$\lrcorner S V(\$)$ and $S V(t)$ show strong correlation over life of project
- Including the delay period
- SV(t)'s advantage is calculating delay as a measure of duration
With Early Finish projects
- ES metrics SV(t) and SPI(t$)$ have behaved consistently with their historic EVM counterparts
Conclusion
SV(t) provides greater management utility than SV(\$) for portraying and analyzing schedule performance

Prediction Comparisons

"Further Developments" in Earned Schedule Schedule Duration Prediction

Calculation of ILAC(t): short form IEAC($\mathbf{t})=$ Planned Duration $/ \operatorname{SPI}(t)$

- Planned Duration for Work Remaining

PDWR = Planned Duration - Earned Schedule cum

- Analogous to the EVM BCWR
\lrcorner Calculation of ILAC(t): long form

$$
\operatorname{IEAC}(\mathrm{t})=\text { Actual Time }+\left(\frac{\text { PDWR }}{\text { Performance Factor }}\right)
$$

IIAC(t) Prediction Comparison Early and Late Finish Project Examples

IEAC(t) Metrics at Project Completion	
Early Finish Project	
Planned Duration (weeks)	25
Actual Time (weeks)	22
Percentage Complete cum	100%
CPI cum	2.08
SPI(t) cum	1.14
SPI(\$) cum	1.17
Critical Ratio cum	$\mathbf{2 . 4 3}$
IEAC(t) PDISII(t) cum	$\mathbf{2 2 . 0}$
IEAC(t) PD/SPI(s) cum	21.4
IEAC(t) PDICR cum	10.3

IEAC(t) Metrics at Project Completion Late Finish Project - pre ES	
Planned Duration (weeks)	20
Actual Time (weeks)	34
Percentage Complete cum	100%
CPI cum	0.52
SPI(t) cum	0.59
SPI(\$) cum	1.00
Critical Ratio cum	0.52
IEAC(t) PD/SPI(t) cum	34.0
IEAC(t) PD/SPI(\$) cum	20.0
IEAC(t) PD/CR cum	38.7

- In both examples, the pre ES predictors (in red) fail to correctly calculate the Actual Duration at Completion!
- The ES predictor, SPI(t) alone correctly calculates the Actual Duration at Completion in both cases

"Further Developments" in Earned Schedule

Schedule Duration Prediction (continued)

Pre ES formulae and results algebraically flawed
s... there is litite theoretical justification for E VMM practitioners continuing to use the pre ES predictors of schedule performance. Conversion to and use of the ES based techniques is strongly recommended."

- Kym Henderson

There's got to be a better method!

ILAC(t) Predictions using ES Techniques: Same Early and Late Finish Project Examples

IEAC(t) Metrics at Project Completion Early Finish Project using ES	
Planned Duration (weeks)	25
Actual Time (weeks)	22
Earned Schedule cum	25.0
Planned Duration Work	
Remaining	0.0
Percentage Complete cum	100%
CPI cum	2.08
SPI (t) cum	1.14
SPI(\$) cum	1.17
Critical Ratio cum	2.43
Critical Ratio ES cum	2.37
IEAC (t) P $=$ SPI(t) cum	22.0
IEAC(t) PF = SPI(s) cum	2.0
IEAC (t) PF $=$ Cr cum	22.0
IEAC (t) PF $=$ CR ES cum	22.0

IEAC(t) Metrics at Project Completion Late Finish Project using ES	
Planned Duration (weeks)	20
Actual Time (weeks)	34
Earned Schedule cum	20.0
Planned Duration Work	0.0
Remaining	0.0
Cercentage Complete cum	100%
SPI(t) cum	0.53
SPI(\$) cum	1.59
Critical Ratio cum	0.52
Critical Ratio ES cum	0.30
IEAC(t) PF = SPI(t) cum	34.0
IEAC(t) PF = SPI(\$) cum	34.0
IEAC(t) PF = CR cum	34.0
IEAC(t) PF = CR ES cum	34.0

- Use of the ES "long form" IEAC(t) formula, results in correct calculation of Actual Duration at Completion

IEAC(t) Predictions using IS Techniques: Weekly Plots of IIEAC(t) Late Finish Project Example

ILCD Predictions using ES Techniques: Weekly Plots of Independent Estimate of Completion Date

ILAC(t) Predictions using ES Techniques:

\square ES formulae and results are algebraically correct
Whilst assessments of the predictive utility of the ES calculated IEAC(t) and the relative meritis of using the various performance factors available are matiters for further research and empinic validation, the theoretical integrity of ES now seems confinmed?"

- Kym Henderson

2 My Experience Summarised

」 Schedule Performance Indicators (for early and late finish projects):

- SPI (t) \& SV(t$)$ do portray the real schedule performanice ins agreement with [1] [2]
- Forecasting Duration (for early and late finish projects):
a at early \& nuiddle project' stagej pre-ES \& ES forecast's produce sinnilar resules
a at late project stage: ES forecasts outperform all pre-ES forecasts in agreensent with [2] [3]
\lrcorner Assessing Project Duration (for early and late finish projects):
- the use of the SPI(t) in conjunction with the TCSPI(t) has been dennonstrated to be useful to nnanage the schedule expectations applicaition of [3]
[1] Lipke Walt, Schedule is Different, The Measurable News, Summer 2003
[2] Henderson Kym, Earned Schedule: A Breakthrough Extension to Earned Value Theory? A Retrospective Analysis of Real Project Data, The Measurable News, Summer 2003
[3] Henderson, Kym, Further Development in Earned Schedule, The Measurable News, Spring 2004

Demonstration of Earned Schedule Calculator

Earned Schedule Calculator

Earned Schedule Calculator (V1)

Earned Schedule Calculator

Earned Schedule Calculator (V2)

Interpolation Error

Interpolation Error

\lrcorner The PMB is an S-Curve. Does the linear interpolation introduce large ES error?
Is error larger where the S-Curve is steepest?
\lrcorner What affects the accuracy of the ES calculation?

Interpolation Error

$I / 1 \mathrm{mo}=p / q$
$I=(p / q) * 1 \mathrm{mo}$
$p=B C W P-$ BCWS $_{C}$
$\mathrm{q}=\mathrm{BCWS}_{\mathrm{C}+1}-$ BCWS $_{\mathrm{C}}$
$I=\frac{B C W P-B C W S_{C}}{B_{C W S}} * 1 \mathrm{mo}$

Interpolation Error

> ES = Number of whole months (C) + \quad Increment on curve (F) $=C+F$ ES(calc) $=C+$ calculated \quad increment (I) Error $(\delta)=I-F$ \% error $=\frac{|\delta|}{C+F}$

Example $=.05 / 8.12=0.6 \%$
As C \Rightarrow larger

- \% error \Rightarrow smaller
- ES(calc) \Rightarrow more accurate

Weekly EV make ES more accurate

Interpolation Error

After a few months of status $(C>4)$ interpolation error is negligible ($\leq 3 \%$)
What about central portion of PMB, where S-Curve is steepest? Is error greater?

- Where slope is large, the resolution of the interpolation is maxinsized
- Curvaiture of PMMB is miniminized
- Interpolation error is negligible

Other Sources of Error

\lrcorner Partial Month -1 st month

- Much more significant than interpolation error
- Error decreases as C becomes larger
- Correctable - adjust calculator output
- Earned Value recorded
- By far, the largest sourge of ES error
- Low accuracy for EV \Rightarrow inaccurate ES

BREAK - 15 Minutes

Exercise - Calculate ES, SV(t), SPI(t)

Exercise \# 1

Complete Early \& Late Worksheets
(tan areas only):

$$
\text { ES, SV(}(t), \operatorname{SPI} I(i)
$$

- Earned Schedule Formulas:
- ES = Nr of Conspleted BCWS Tinse Periods + Fraction of Unconnpleted Period
- Fraction $=\left(\right.$ BCWMP - BCWS $\left._{n}\right) /($ BCWS
- $A T=A c t u a l$ Jime (number of periods firom starti)
- Schedule Variarice: $S V(\mathrm{~L})=E S$ - AT
- Schedule Performance Inclex: SPI $(\mathrm{t})=$ ES / AT

ES Exercise - Worksheet

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
BSWS(\$)	105	200	515	845	1175	1475	1805	2135	2435	2665	2760	2823
BCWP(\$)	115	220	530	870	1215	1525	1860	2190	2500	2740	2823	------
SV(\$)	10	20	15	25	40	50	55	55	65	75	63	------
SPI(\$)	1.095	1.100	1.029	1.030	1.034	1.034	1.030	1.026	1.027	1.028	1.023	------
Month Count	1	2	3	4	5	6	7	8	9	10	11	12
ES(cum)												
SV(t)												
$\mathrm{SPI}(\mathrm{t})$												

Early Finish Project (Cumulative Values)

EVA-11
Jun 12-17, 2006

ES Exercise - Worksheet

Late Finish Project (Cumulative Values)

ES Exercise - Answers

| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

BSWS(\$)	105	200	515	845	1175	1475	1805	2135	2435	2665	2760	2823
BCWP(\$)	115	220	530	870	1215	1525	1860	2190	2500	2740	2823	----
SV(\$)	10	20	15	25	40	50	55	55	65	75	63	-----
SPI(\$)	1.095	1.100	1.029	1.030	1.034	1.034	1.030	1.026	1.027	1.028	1.023	---
Month Count	1	2	3	4	5	6	7	8	9	10	11	12
ES(mo)	1.105	2.063	3.045	4.076	5.133	6.152	7.167	8.183	9.283	10.789	12.000	----
SV(t)	0.105	0.063	0.045	0.076	0.133	0.152	0.167	0.183	0.283	0.789	1.000	------
SPI(t)	1.105	1.032	1.015	1.019	1.027	1.025	1.024	1.023	1.031	1.079	1.091	-----

Early Finish Project (Cumulative Values)

EVA-11
Jun 12-17, 2006

Copyright 2006
Lipke \& Henderson

ES Exercise - Answers

| | | | | | | Year 01 02 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

BSWS(\$)	105	200	515	845	1175	1475	1805	2135	2435	2665	2760	2823			
BCWP(\$)	95	180	470	770	1065	1315	1610	1900	2150	2275	2425	2555	2695	2770	2823
SV(\$)	-10	-20	-45	-75	-110	-160	-195	-235	-285	-390	-335	-268	-128	-53	0
SPI(\$)	0.905	0.900	0.913	0.911	0.906	0.892	0.892	0.890	0.883	0.854	0.879	0.905	0.955	0.981	1.000

Month Count	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ES(mo)	0.905	1.789	2.857	3.772	4.667	5.547	6.409	7.288	8.050	8.467	8.967	9.522	10.316	11.159	12.000
SV(t)	-0.095	-0.211	-0.143	-0.228	-0.333	-0.533	-0.591	-0.712	-0.950	-1.533	-2.033	-2.478	-2.684	-2.841	-3.000
SPI(t)	0.905	0.894	0.952	0.943	0.933	0.911	0.916	0.911	0.894	0.847	0.815	0.794	0.794	0.797	0.800

Late Finish Project (Cumulative Values)

EVA-11
Jun 12-17, 2006

Copyright 2006
Lipke \& Henderson

Status Update

Early Adopters

EVM Instructors

- PMA, Management Technologjes ...

Boeing Dreamliner®, Lockheed Martin, US State Department, Secretary of the Air Force, UK MoD

- Several Countries - Australlia, Belgjum, Sweden, UK, USA ...
Applications across weapons programs, construction, software development, ...
- Range of project size from very small and short to extremely large and long duration

PMI-CPM EVM Practice Standard

\lrcorner Inclusion of Emerging Practice Insert into PMI - EVM Practice Standard
Dr. John Singley, VP of CPM

- Included in Box 3-1 of EVM

Practice Standard

- Describes basic principles of "Earned Schedule"
- Provides foundation for acceptance as a valid extension to EVM
- EVM Practice Standard released at 2004 IPMC Conference

EVA-11

Available Resources

- PMII-Sydney nitit://sydney, pmichapters-ausitraliá,orglazu/

Repository for ES Papers and Presentations

- Earned Schedule Website
hittop://www,earnedschecdule.com/
- Established February 2006
- Contains News, Papers, Presentations, ES Terminology, ES Calculators
- Identifies Contacts to assist with application
- Wikjpedia now references Earned Schedule hittpi://en,wikipedia.org/wiki/Earned Schedule

Foreseen Uses of Earned Schedule

Enables independent evaluation of schedule estimates: ETC(t$)$, EAC(t$)$

- Clienit, Conitractor, Prograns ansl Project Manager
\lrcorner Facilitates insight into network schedule performance
- Duration based Schedule inclicaicors

Identification of impediments/constiraints and potential future rework

- Evaluaition of acherence to plans

Improvement to Schedule and Cost prediction

- Client, Conitractor, Progrann and Project Manager

Application of direct statistical analysis of schedule performance

3 Research Efforts

Extracted results from [8]: Forecast Accuracy and the Completion of Work

Simulation runs performed: 1 run project finish ahead of schedule, 1 run projects finish behind

Plans are made to present the research report "A simulation and evaluation of earned value metrics to forecast the project duration" at the 22nd ${ }^{\text {PMI-CPM Spring Conference } 2006 . ~}$
[8] Vanhoucke Mario, Vandevoorde Stephan, A simulation and evaluation of earned value metrics to forecast the project duration , Working Paper 2005/317, July 2005, Ghent University

Summary - Basic

Summary - Basic

- Derived firom EVM data ... only

Provides time-based schedule indicators
Indicators do not faill for late finish projects
Application is scalable up/down, just as is EVM
Schedule prediction is better than any other EVM method presently used

- SPI(t) behaves similarly to CPI
- IEAC(t) = PD / SPI(t) behaves similarly to IEAC = BAC / CPI

Summary - Basic

- Schedule prediction - much easier and possibly better than "bottoms-up" schedule analysis
Application is growing in both small and large projects
- Practice recognized as "Emerging Practice"

Resource availability enhanced with ES website and Wikjpedia
Research indicates ES superior to other methods

BREAK - 15 Minutes

Earined Schedule Training Advanced

Analysis Tool Demonstration

Earned Schedule Analysis Tool

Earned Schedule Analysis Tool

ES and Re-Baselining

ES and Re-Baselining

\lrcorner ES indicators are affected by re-baselining - Behaviour of SV(t) and SPI(t) is analogous to CV and CPI
See examples
PMB change affects schedule prediction similarly to cost
\lrcorner Earned Schedule brings attention to the potential schedule impact of a declared "cost only" change

Earned Schedule - Re-Baseline Example Real project data - nominal re-baseline

Earned Schedule - Re-Baseline Example

Critical Path Study

Critical Path Study Outline

\lrcorner The Scheduling Challenge
Case Study Project
The project
-The EVM, Earned Schedule and Network Schedule approach
\lrcorner Earned Schedule vs Critical Path predictors

- Real Schedule Management with Earned Schedule
- Initial experience and observation

The Scheduling Challenge

Δ A realistic project schedule is dependent on multiple, often complex factor's including accurate:

- Estimation of the tasks required,
- Estimates of the task durations
- Resources required to complete the identified tasks
- Identification and modeling of dependencies impacting the execution of the project
- Task dependencies (e.g. F-S process flows)
- "Dependent" Milestones (internal and external)
- "Other logic"

The Scheduling Challenge

-From small projects into large projects and programs, scheduling requirements becomes exponentially more complex
Integration
Of schedules between "master" and "subordinate" schedules
-Often across multiple tiers of
\lrcorner Activities and
\lrcorner Organisations
contributing to the overall program of work
Essential for producing a useful integrated master schedule

To further compound schedule complexity

Once an initial schedule baseline has been established progress monitoring inevitably results in changes
Task and activity durations change because "actual performance" does not conform to plan
Additional unforeseen activities may need to be added
Logic changes as a result of corrective actions to contain slippages; and
-Improved understanding of the work being undertaken
-Other "planned changes" (Change Requests) also contribute to schedule modifications over time

Wouldn't it be nice

- To be able to explicitly declare "Schedule Reserve" in the project "schedule of record"
- Protect committed key milestone delivery dates

To have schedule macro level indicators and predictors

- Ideally, derived separately from the network schedule!
- Provides a means for comparison and validation of the measures and predictors provided by the network schedule
- An independent predictor of project duration would be a particularly useful metric
- "On time" completion of projects usually considered important
ـ Just like EVM practitioners have for cost
- The potential offered by Earned Schedule

Case Study Project

-Commercial sector software development and enhancement project
Small scale: 10 week Planned Duration

- Time critical: Needed to support launch of revenue generating marketing campaign
- Cost budget: 100% labour costs
- Mixture of:
- 3 tier client server development
- Mainfirame, Middlleware, Workstation
- 2 tier client server development
- Mainframe to Workstation direct

The EVM and ES Approach

Microsoft Project 2002 schedule
\rightarrow Resource loaded for time phased effort and cost estimation
Control Account - Work Package views developed in the schedule
-Actual Costs captured in SAP time recording system

- Limited (actual) cost - schedule integration

Contingency (Management Reserve) managed outside the schedule
Top level Planned Values cum "copied and pasted" into Excel EVM and ES template
Δ High level of cost - schedule integration achieved

Schedule Management

Weekly schedule updates from week 3 focusing on:
-Accurate task level percentage work completion updates
-The project level percentage work completion (cumulative) calculated by Microsoft Project

- Percentage work complete transferred to the EVM and ES template to derive the progressive Earned Value (cumulative) measure
\lrcorner Schedule review focusing on critical path analysis
-Schedule updates occurred as needed with
- Revised estimates of task duration and
-Changes to network schedule logic particularly when needed to facilitate schedule based corrective action
- Actual costs entered into the EVM and ES template as they became available (weekly)

An Integrated Schedule Analysis Chart

 Critical Path, IECD, SPI(t) and SPI(\$) on one page

Schedule Analysis

-Initial expectation

- The critical path predicted completion date would be more pessimistic than the IECD
In fact
The ES IECD trend line depicted a "late finish" project with improving schedule performance
- The critical path predicted completion dates showed an "early finish project" with deteriorating schedule performance
- Became the "critical question" in Week 8
- ES IECD improvement trend reversed
- Continued deterioration in the critical path predicted completion dates

Schedule Analysis Result

\checkmark IECD the more credible predictor in this circumstance -Work was not being accomplished at the rate planned -No adverse contribution by critical path factors
e.g. Externally imposed delays caused by "dependent milestone ${ }^{\prime \prime}$
\lrcorner Two weeks schedule delay communicated to management

- Very late delay of schedule slippage a very sensitive issue Corrective action was immediately implemented
\rightarrow Resulted in two weeks progress in one week based on IECD improvement in week 9
-Project substantively delivered to the revised delivery date

The IECD vs Critical Path Predictors

\lrcorner Network schedule updates do not usually factor past (critical path) task performance into the future Generally concentrate on the current time window

- Task updates

Corrective action to try and contain slippages
-Critical path predicted completion date is not usually calibrated by past actual schedule performance
-The ES IECD
-Cannot directly take into account critical path information
-BUT does calibrate the prediction based on historic schedule performance as reflected in the SPI((t)

Further Observations

Much has been written about the consequences of not achieving work at the EVM rate planned At very least, incomplete work needs to be rescheduled... -Immediate critical vs non critical path implication requires detailed analysis of the network schedule
-Sustained improvement in schedule performance is a difificult challenge
SPI(t) remained in the . 7 to . 8 band for the entire project!
In spite of the corrective action and recovery effort
Any task delayed eventually becomes critical path if not completed
\lrcorner SPI (t) a very useful indicator of schedule performance - Especially later in the project when SPI(\$) was resolving to 1.0

Questions of Scale

We know that ES is scalable as is EVM
uIssues of scale did not arise due to small size of the project
Detailed analysis of the ES metrics is required
The same as EVM for cost
The "masking" or "washout" effiect of negative and positive ES variances at the detailed level can be an issue
The same as EVM for cost
Apply Earined Schedule to the Control Accounts and Work Packages on the critical path
-And "near" critical path activities
Earned Schedule augments network schedule analysis

- it doesn't replace it

Just as EVM doesn't replace a bottom up ETC and EAC

Real Schedule Management with Earned Schedule

- ES is of considerable benefit in analysing and managing schedule performance
\lrcorner The "time critical" dichotomy of reporting "optimistic" predicted task completions and setting and reporting realistic completion dates was avoided
- ES metrics provided an independent means of sanity checking the critical path predicted completion date
- Prior to cominnunicating overall schedule status to management

ES focused much more attention onto the network schedule than using EVM alone

Final Thoughts

ES is expected be of considerable value to the schedule management for large scale projects and programs
Exponential increase in the network scheduling complexities
Unavoidable and necessary on those programs and so
-The need anid benefit of ans indlepenclent nneans of sanity checking schedules of such complexity is much greater

ES is anticipated to become the "bridge" between EVM and the Network Schedule

Network Schedule Analysis

Schedule Analysis with EVM?

\lrcorner The general belief is EVM cannot be used to predict schedule duration

- Most practitioners analyze schedule from the bottom up using the networked schedule"It is the only way possible."
- Analysis of the Schedule is overwhelming
- Critical Path is used to shorten analysis
(CP is longest path of the schedule)

Schedule Analysis with EVM?

\lrcorner Duration prediction using Earned Schedule provides a macro-method similar to the method for estimating Cost A significant advance in practice

- But, there's more that ES facilitates

Earned Schedule

Bridges EVM to "Rea/" Schedule

How Can This Be Used?

\lrcorner Tasks behind - possibility of impediments or constraints can be identified

- Tasks ahead - a likelihood of future rework can be identified
The identification is independent from schedule efficiency
\lrcorner The identification can be automated

$$
\begin{aligned}
& \text { PMIs Can now have as schedule analysis tool } \\
& \text { connected to the EVMM Data!! }
\end{aligned}
$$

BREAK - 15 Minutes

Earned Value Research

Earned Value Research

\lrcorner Most research conducted since 1990

- Result of cancellation of Navy A-12 Avenger
- Primary researcher, Dr. David Christensen, Southern Utah University
- Cost studlies using very large DOD projects
- EVM Literature on Dr. Christensen's website nitep://wwww.sulu.edu/faculloy/christensend/ev-bib, hitiml

Results from EV Research

\lrcorner Dr. Christensen's \& associates' findings

- CPI stabilizes @ 20\% complete
- CPI tends to worsen as EV \Rightarrow BAC
- |CPI(final) - CPI $(20 \%) \mid \leq 0,10$
- IEAC = BAC / CPI \leq Final Cost

When Percent Complete is $20 \% \Leftrightarrow 70 \%$

Discussion of EV Research

CPI tends to worsen as EV \Rightarrow BAC

- IEAC = BAC / CPI \leq Final Cost when Percent Complete is $\geq 20 \%$
IEAC condition must be true if CPI tendency is true
- Rationale supporting CPI tendency
- Rework increasing as EV approaches BAC

Late occurring impacts from constraints/impediments

- Lack of available EV toward end of project
- My conjjeciture; SPI(S^{2} \& IEAC($\left.i\right)=P D / S P I(L)$ benlave sinnilarly to CPI \& IEAC $=B A C / C P I$

CPI \& IEAC Behavior

Schedule Adherence

Schedule Adherence

EV isn't connected to task sequence

- Hypothesis: Completion sequence of tasks affects performance efficiciency
Incorrect task sequencing occurs when there is..
- Impediment or constraint
- Poor process discipline

Improper performance sequence may cause ...

- Overloading of constraint
- Performance of tasks w/o complete inputs

Schedule Adherence

- Result from improper performance sequence...
- Constraint limited output
- Schedule lengthens
\lrcorner Cost increases while waiting (when other EV available is severely limited)
Rework occurs (~ 50\%)
Schedule lengthens
- Cost escalates
\lrcorner Constrajint problem \& Rework appear late causing ...
- CPI 8: SPI(t) to clecrease as EV \Rightarrow BAC

Schedule Adherence

\lrcorner Schedule Adherence measure is used to enhance the EVM measures
Early warning for later cost and schedule problems

- Proposed Measure: In accordance with the project plan, determine the tasks which should be completed or started for the duration associated with ES, Compare the associated PV with the EV of the tasks which alirectly correspond. Calculate the retio:

$$
\begin{aligned}
& =\Sigma E V j(\text { (corresponiling) } / \Sigma \text { 'PVj (plani) } \\
& \text { wifere } \Sigma^{\prime} E V j=\Sigma^{\prime} P V j \text { \& } \Sigma^{\prime} P V j=E V
\end{aligned}
$$

Schedule Adherence

- Characteristics of the P measure
- P measure cannot exceed 1.0

$$
0 \leq P \leq 1.0
$$

At project completion $P=1.0$

- P is likely unstable until project is 20% complete \{similar to the behavior of CPI\}
- Th́le bé́lavior off P rraly ex,p/ain Dr. Chiristenisen's fínclifigs for CPI \&? IEAC
- P used to compute effective earned value $\{\mathrm{EV}(\mathrm{e})\}$

Effective Earned Value

Effective Earned Value

EV(r) is performed at risk of creating rework Portion colored \square is usable Portion colored is unusable

Effective EV Relationships

\lrcorner P-Factor $($ or $P)=\Sigma E V_{j} / \Sigma P V_{j}=\Sigma E V_{j} / E V$

$$
\Sigma E V j=P * E V
$$

$E V(p)$ is portion of $E V$ consistent with the plan

$$
E V(p)=\Sigma E V j=P * E V
$$

$\lrcorner \mathrm{EV}(\mathrm{r})$ is portion of EV with anticipated rework

$$
\begin{aligned}
& E V(r)=E V-E V(p)=E V-P * E V \\
& E V(r)=(1-P) * E V
\end{aligned}
$$

Effective EV Relationships

\lrcorner Rework proportion $(R \%)=f(r) / f(p)$

$$
\begin{aligned}
& f(r)=\text { fraction of EV }(r) \text { unusable } \\
& f(p)=f \text { fraction of EV }(r) \text { usable } \\
& f(r)+f(p)=1
\end{aligned}
$$

\lrcorner Portion of EV(r) usable

$$
\begin{aligned}
& f(p) * R \%+f(p)=1 \\
& f(p)=1 /(1+R \%)
\end{aligned}
$$

Effective Earned Value

Effective earned value is a function of $E V$, P, and Rework: $E V(e)=f(E V, P$, Rework $)$

$$
\begin{aligned}
E V(e) & =E V(p)+(\text { fraction usable }) * E V(r) \\
& =P * E V+(1 / 1+R \%) *[(1-P) * E V]
\end{aligned}
$$

General equation for Effective Earned Value

$$
E V(e)=[(1+P * R \%) /(1+R \%)] * E V
$$

Special case, when $R \%=50 \%$

$$
E V(e)=[(P+2) / 3] * E V
$$

Effective Earned Value

Effective ES is computed using $E V(e)$ $\{i, e, E S(e)\}$

- Effective EV and ES indicators are ...
- $\mathrm{CV}(\mathrm{e})=\mathrm{EV}(\mathrm{e})-\mathrm{AC}$
- CPI $(\mathrm{e})=\mathrm{EV}(\mathrm{e}) / \mathrm{AC}$
$-\mathrm{SV}(\mathrm{te})=\mathrm{ES}(\mathrm{e})-\mathrm{AT}$
- SPI(te) = ES(e) / AT

Graphs of CPI, CPI(e)
 \& P-Factor (notional dita)

Graphs of CPI \& SPI(t) with the P - Factor

Forecasting with Effective Earned Value

Forecasting with Effective Earned Value

Schedule Prediction

Cost Prediction

IEAC(te) = PD / SPI(te)
$\operatorname{IEAC}(\mathrm{e})=\mathrm{BAC} / \mathrm{CPI}(\mathrm{e})$

Schedule \& Cost Prediction

Summary: Effective Earned Value

\lrcorner Lack of acherence to the schedule causes EV to misrepresent project progress

- P indicator introduced to measure schedule adherence
- Effective EV calculable from P, R\% and EV reported
\lrcorner Prediction for both final cost and project duration hypothesized to be improved with Effective Earned Value

Statistical Prediction

Statistical Prediction

\lrcorner Statistical Process Control

- Planning for Risk
\perp Performance Indication \& Analysis
- Outcome Prediction

Application Problems

Distributions of periodic values of CPI \& SPI(t) are right-skewed

- Logarithms transiforms to Normal Distribution

Research indicates CPI tends to worsen as

$\mathrm{EV} \Rightarrow \mathrm{BAC}$

- Statistics application assunnes lack of any tendency
- Effective EV used to remove tenclency

Statistical Process Contirol

SPC is a Quality method used to identify anomalous behavior of the process
For application to CPI and SPI(t), SPC is used to identify anomalous periodic performance

- Clarifies "true" performance

Allows better analysis
Improves prediction

Statistical Process Contiol

Planning for Risk

Risk mitigation \Rightarrow Schedule Reserve
Data needed

- Performance variacion firons sinnilar historical project [Stanclard Deviarion $=\sigma_{H}$]
- Plansed Duration of new project [provicles the number of performanice observacions (n)]
- Variation of Means (In SPI $\left.(t)_{m}{ }^{-1}\right)=\sigma_{H} / V n=\sigma_{m}$
- Probability of Success Desired (PS)

Planning for Risk

Performance Indication \& Analysis

Performance Window Indicator

- Combines CPI \& SPI(t) onto one chart
- Depiction is invariant to project size
- Provides visual of performance in relation to Plan \& Negotiated requirement
- Illustrates diminishing opportunity for recovery
- Provides Probabilitity of Success separately for Cost \& Schedule

Performance Indication \& Analysis

Outcome Prediction

Apply SPC to establish "true" performance for CPI \& SPI(t)

- Residual Cumulative value
- Standard Deviation of periodic performance
- Compute the adjustment for accomplished portion of project
- Compute adjusted Standard Deviation of the Means (σ_{z})

Outcome Prediction

\lrcorner Using the results ...

- Determine Corificterice Lirritis for the

Performance Window - e.g., 95\% confidence ...that is, the high and low expectations for performanice

- Calculate Prob́aibij/ity of Siuccess for both Cost \& Schedule separately

Summary - Advanced

Summary - Advanced

\lrcorner Project analysis tool [EV \& ES application]
Re-baseline impacts SPI(t) similarly to CPI
Duration prediction from ES much easier than using Critical Path analysis ...and may be better
Network schedule analysis enhanced by ES
-Identifies future problems \& today's impediments

Summary - Advanced

\perp ES connects EV to the schedule

- Schedule Acherence
- Effiective Earned Value
- Possible eninancennent of outicome prediction for schedule ¿? cost
Statistical techniques provide facility to improve planning, analysis, and outcome prediction

Quiz \& Discussion

Question \#1

What is the problem with the EVM schedule indicators, SV and SPI?

- They measure schedule performance in $\$ \$$
- They sometimes are erroneous
- They can be poor predictors of outcome All of the above

Question \#2

Why do SPI \& SV fail to provide reliable schedule information?

EVM measures schedule performance in $\$ \$$
8 PV \& EV are constrained to BAC

- They are not related to the networked schedule
All of the above

Question \#3

What elements are required to compute Earned Schedule?

- AT \& EV
- AC \& PMB
- EV \& PV

EV \& PMB

- All of the above

Question \#4

What does Earned Schedule measure?

- Time at which Actual Cost appears on PMB
- Time at which Planned Value equals Earned Value
- Time at which Earned Value is reported
. None of the above

Question \#5

\lrcorner The equation for Earned Schedule is

$\mathrm{ES}_{\text {cum }}=\mathrm{C}+\mathrm{I}$. How is I calculated?

- I must be determined graphically
- I = EV / PV
$\mathrm{I}=\left(E V-P V_{C}\right) /\left(P V_{C+1}-P V_{C}\right)$
$\circ I=\Delta E V / \Delta P V$

Question \#6

What is the largest source of error for the Earned Schedule measure?

* Earned Value reported
- Interpolated portion of the ES value
- Earned Value accounting practice
- Crediting first month as a full month

Question \#7

Earned Schedule can be used to provide information about future rework and project constraints and impediments.
o True

- False

Question \#8

What fundamental elements are needed to predict the completion date for a project?

Date + AC, EV, PV

- Date + AC, AT, PMB
- Date + PMB, EV, AT
- Date + PV, PMB, AT
© Date + ES, AT, PD

Question \#9

What does the P-Factor help us understand about project performance?

- How closely the project is following its plan
- Why performance has the tendency to become less efficient as $\mathrm{EV} \Rightarrow \mathrm{BAC}$
- Improves analysis of true project accomplishment
* All of the above

Question \#10

How does Effective Earned Value differ from Earned Value?

- Effective EV \leq EV
- Effective EV accounts for rework
- Allows for earlier prediction of final project outcome
All of the above
- None of the above

Wrap-Up

Wrap Up

- Derived from EVM data ... only

Provides time-based schedule indicators
Indicators do not fail for late finish projects
Application is scalable up/down, just as is EVM
Schedule prediction is better than any other EVM method presently used

- SPI(t) behaves similarly to CPI
- IEAC(t) = PD / SPI(t) behaves similarly to IEAC = BAC / CPI

Wrap Up

- Schedule prediction - much easier and possibly better than "bottoms-up" schedule analysis
\lrcorner Facilitates bridging EVM to schedule analysis
- Identification of Constraints / Impediments and Rework
- Calculation of Schedule Adherence
- Creation of Effective Earned Value

> Leads to irsproved
> Schedule \& Cost Forecasiting

Conclusion

- "Whatever can be done using EVM for Cost Analysis can also be done using Earned Schedule for Schedule Analysis"

Earned Schedule
A powerful new dimension to Integrated Project Performance Management (IPPM)
A breakthrough in theory and application

Contact Information

Walt Lipke		Kym Henderson
Weltipke@coknet	Email	Kymu henderson @ifirggy comaul
(405) 364-1594	Phone	61414428537

